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Abstract

In the past decade there has been an upsurge in the number of newly described insect-specific 

flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus 

(tentatively designated “Nhumirim virus”; NHUV) (Pauvolid-Correa et al., in review) that 

represents an example of a unique subset of apparently insect-specific viruses that 

phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be 

limited to replication in mosquito cells. We characterized the in vitro growth potential, 3’ 

untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the 

virus’s capacity to suppress replication of representative Culex spp. vectored pathogenic 

flaviviruses in mosquito cells. Only mosquito cell lines were found to support NHUV replication, 

further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and 

predicted RNA secondary structures of the 3’ UTR indicate NHUV to be most similar to viruses 

within the yellow fever serogroup, Japanese encephalitis serogroup, and viruses in the tick-borne 

flavivirus clade. NHUV was found to share the fewest conserved sequence elements when 

compared to traditional insect-specific flaviviruses. This suggests that, despite being apparently 

insect-specific, this virus likely diverged from an ancestral mosquito-borne flavivirus. Co-

infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV 

resulted in significant reduction in viral production of West Nile virus (WNV), St. Louis 
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encephalitis virus (SLEV) and Japanese encephalitis virus. The inhibitory effect was most 

effective against WNV and SLEV with over a million-fold and 10,000-fold reduction in peak 

titers, respectively.

INTRODUCTION

New sequencing technologies have drastically improved the capabilities for rapid genetic 

characterization of novel viruses and microorganisms, for both emerging pathogens of 

animals as well as non-pathogenic microflora and microfauna that could modulate the 

receptivity of hosts to infection with pathogens of medical and veterinary importance. This 

has been exemplified recently by the identification of numerous novel flaviviruses (Aliota et 

al., 2012; Cook et al., 2009; Crabtree et al., 2009; Evangelista et al., 2013; Hobson-Peters et 

al., 2013; Hoshino et al., 2009; Huhtamo et al., 2009; Junglen et al., 2009; Kolodziejek et 

al., 2013; Lee et al., 2013b; Parreira et al., 2012; Roiz et al., 2009; Sang et al., 2003; 

Vazquez et al., 2012) with an arthropod-restricted host range that, although not known to 

directly illicit disease in vertebrates, could alter the capacity of arthropods to transmit 

vector-borne pathogens. Studies demonstrating the role of mosquito microbiome in the 

modulation of vector competence for arboviruses capable of eliciting disease in humans 

underscores the potential that infection with insect-specific flaviviruses could similarly 

modulate transmission of human arboviral pathogens. (Bolling et al., 2012; Cirimotich et al., 

2011; Gubler, 2002; Hobson-Peters et al., 2013; Kent et al., 2010a; Weiss & Aksoy, 2011).

Flaviviruses are enveloped viruses comprised of a single-stranded, positive-sense RNA 

genome of approximately 11 kb consisting of a 5’ and 3’ untranslated regions and a 

methylated cap that allows for direct translation of a single open reading frame (ORF) 

resulting in a of a single polyprotein (Markoff, 2003; Wengler et al., 1978). The ORF 

encodes three structural proteins including the capsid (C), premembrane/membrane (prM), 

and envelope (E), and seven nonstructural proteins including NS1, NS2A, NS2B, NS3, 

NS4A, NS4B, and NS5 (Castle et al., 1986; Rice et al., 1985) that are cleaved co- and post-

translationally by host and viral proteases. Analyses of flavivirus genomes have 

demonstrated them to cluster phylogenetically by host preference range: insect specific 

flaviviruses (ISFs), dual-host tick-borne flaviviruses (TBFVs), viruses with no known vector 

(NKV), or mosquito-borne flaviviruses (MBFVs) (Gould et al., 2003; Kuno et al., 1998).

ISFs constitute a relatively novel group of flaviviruses characterized as single-host viruses 

that replicate in insects and have demonstrated replication incompetence in vertebrate cells. 

To date, the only arthropod source of insect specific flaviviruses (ISFs) has included 

members of the order Diptera, predominantly mosquitoes and sandflies. It remains to be 

determined if ISFs exist in alternative arthropod taxa such as ticks. TBFVs are categorized 

into two groups: the seabird tick-borne group and the mammalian tick-borne group. The 

NKV group can be sub-grouped into viruses associated with bats or rodents. MBFVs with 

dual hosts such as Japanese encephalitis virus (JEV) and yellow fever virus (YFV) form 

distinct phylogenetic clades that correlate with the mosquito genus primarily associated with 

viral transmission. However, some viruses, such as Entebbe bat virus (EBV) and Yokose 

virus (YOKV), with no apparent mosquito vector also fall into the MBFV phylogenetic 
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grouping. It is unclear as to whether the vector for these viruses has yet to be detected or if 

they have lost the ability for mosquito-borne transmission (Kuno et al., 1998).

Like dual-host MBFVs, classically recognized ISFs form two phylogenetic subgroups based 

on whether they are vectored by Aedes or Culex mosquitoes. Aedes associated viruses such 

as cell fusing agent virus (CFAV), Aedes flavivirus (AeFV), and Kamiti River (KRV) virus 

have been isolated respectively from Puerto Rico (Cook et al., 2006), Japan (Hoshino et al., 

2009), and Kenya (Crabtree et al., 2003). However, homologous viral sequences have also 

been identified in Spain (Aranda et al., 2009; Sanchez-Seco et al., 2010), Italy (Calzolari et 

al., 2010; Roiz et al., 2009), and Canada (Pabbaraju et al., 2009) indicating a widespread 

geographic distribution. ISFs identified to infect Culex mosquitoes include Quang Binh 

virus (QBV) isolated from Vietnam (Crabtree et al., 2009), Calbertado virus (CLBOV) 

isolated from North America (Bolling et al., 2011), and Culex flavivirus (CxFV), which has 

been isolated from Trinidad-Tobago (Kim et al., 2009), Guatemala (Morales-Betoulle et al., 

2008), Mexico (Farfan-Ale et al., 2009; Farfan-Ale et al., 2010), Uganda (Cook et al., 

2009), USA (Blitvich et al., 2009; Crockett et al., 2012; Kim et al., 2009), and Japan 

(Hoshino et al., 2009). Nakiwogo virus (NAKV), a monophyletic Culex specific ISF, was 

isolated from Mansonia africana nigerrima (Cook et al., 2009). A number of studies have 

highlighted the potential for ISFs to have an inhibitory effect on co-infecting flaviviruses of 

medical importance. For example, CxFV has been shown to suppress the capacity for Culex 

spp. to become infected and transmit WNV (Bolling et al., 2012; Kent et al., 2010a). 

Similarly, a potential role of superinfection exclusion was indicated by reduced replication 

of Kunjin and Murray Valley fever virus in the presence of the ISF Palm Creek virus in 

C6/36 cells (Hobson-Peters et al., 2013).

Interestingly, there is a growing number of ISF-like isolates that appear to be phenotypically 

insect-specific with no indication of replication in vertebrates, yet are phylogenetically 

distinct from the ISF clade, as they group with other dual-host MBFVs. These isolates, 

characterized for the purposes of this manuscript as unidentified vertebrate host (UVHs) 

viruses in the MBFV group, are limited to replication in arthropod cells include: Nounané 

virus (NOUV) (Junglen et al., 2009), Lammi virus (LAMV) (Huhtamo et al., 2009), 

Chaoyang virus (CHAOV) (Lee et al., 2013a), Barkedji virus (BJV) (Kolodziejek et al., 

2013), and Nanay virus (NANV) (Evangelista et al., 2013). Like viruses from the ISF 

phylogenetic cluster, these viruses have been isolated from a wide geographic range 

including Israel, Peru, Finland, Côte d’Ivoire, the Republic of Korea, and China.

Continued isolation and characterization of these unique flaviviruses will provide key 

insights into the evolution of vector/host adaptation and, potentially, flavivirus origins. 

Herein, we describe the characterization of a novel mosquito-borne flavivirus, tentatively 

designated Nhumirim virus (NHUV), isolated from the Pantanal region of Brazil (Pauvolid-

Correa et al., in review) that appears to be most closely related to other novel flaviviruses 

that have insect-specific host replication capabilities but differ from their projected 

phylogenetic relationships by grouping within dual-host MBFVs. We evaluated its 

phylogenetic relationship to other flaviviruses, identified permissive cell lines in vitro, 

analyzed the predicted secondary structure of the 3’ UTR, and demonstrated the virus’s 
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ability to suppress replication of representative Culex spp. vectored pathogenic flaviviruses 

in vitro.

RESULTS

Virus Isolation and in vitro characterization

A novel flavivirus tentatively designated Nhumirim virus (NHUV) was isolated from a 

single pool of 43 non-engorged adult female Culex chidesteri collected in April 2010 in 

Brazil (Pauvolid-Correa et al., in review). Evidence of cytopathic changes were definitively 

identified six days following initial inoculation onto C6/36 cells, whereas no CPE was 

observed from initial inoculation on Vero cells. Upon secondary passage in C6/36, NHUV 

manifested CPE in the form of rounded cells still attached to the monolayer, observable 

within 3 days post-infection (dpi), and limited syncytia development by 6 dpi (Fig. 1). The 

C6/36 TCID50 of the stock isolated from the second passage of NHUV was 9.1 log10 

TCID50/ml and was used to inoculate additional cell lines. While NHUV was able to 

replicate in other mosquito cell lines including Ae. albopictus C7/10, C6/36, and Cx. 

quinquefasciatus cells, the virus did not replicate in alternative invertebrate cells. 

Inoculation of ISE6 tick cells failed to generate detectable infectious virus assayed on C6/36 

cells as screened by IFA (Fig. 2). Furthermore, RNA extracted from culture supernatants of 

the second passage were RT-PCR negative using pan-flavivirus primers. Attempted 

culturing in vertebrate cell lines, including Vero, BHK21, DF-1, and Xenopus laevis, proved 

unsuccessful as confirmed by negative RT-PCR amplification of the second passage and 

lack of detectable antigen detection by IFA using a pan-flavivirus (4G2) monoclonal 

antibody developed from a Dengue 2 (New Guinea C) strain (Gentry et al., 1982) (Table 1).

Sequence and phylogenetic analysis

The complete NHUV genome, including the 5’ and 3’ UTRs, was sequenced and identified 

to be 10,891 nucleotides (nt) in length. The predicted open reading frame (ORF) was 10,338 

nt, while the 5’ UTR was 102 nt, and the 3’ UTR 451 nt. Three flavivirus-type structural 

proteins C, prM, E, and seven flaviviral non-structural proteins, NS1, NS2A, NS2B, NS3, 

NS4A, NS4B, and NS5 were identified (Table 2) and polyprotein cleavage sites were 

predicted (Table 3. The full viral sequence has been deposited in GenBank under accession 

number KJ210048 (Pauvolid-Correa et al., in review). The coding region of NHUV had the 

greatest nucleotide identity to BJV (65.9%) and NOUV (56.2%), both recent isolates that 

have demonstrated the unique phenotypic characteristics of UVH viruses (Table 4). 

Maximum likelihood phylogenetic analysis of the ORF regions of 59 flavivirus sequences 

similarly indicated that NHUV was most closely related to a group of novel UVH viruses 

that cluster within the dual-host mosquito borne flaviviruses with strong bootstrap support 

(Fig. 3). Interestingly, viruses that have been shown to be restricted to growth in insect cells 

within the MBFV clade cluster in two distinct branches with robust bootstrap support: one 

consisting of DGV, LAMV, and CHAOV, with the other branch containing NHUV, BJV, 

and NOUV (Fig. 3).
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3’ UTR characterization

Studies of the flavivirus 3’ UTR have identified a number of direct repeats that appear to 

have evolved from a progenitor of six long repeated sequences (LRS) that are homologous 

to extant TBFV 3’ UTR sequences (Gritsun & Gould, 2006c; 2007b). Alignments between 

the flavivirus 3’ UTRs have indicated the evolutionary remnants of these LRSs can be 

identified in MBFV, NKV, and ISFV and tend to show conservation within each group 

(Gritsun & Gould, 2007a; b). Comparison of the NHUV 3’ UTR to representative viruses 

for each flavivirus group MBFV, TBFV, NKV, and ISFV were made in order to identify 

homologous regions of conservation (Fig. 4). NHUV was identified to have several 

conserved structural elements in common with viruses in the MBFV group including a 3’ 

terminal long-stem loop (3’LSH) with conserved pentanucleotide sequence CACAG, a 

conserved stem loop (SL2), and a conserved dumbbell shaped element (DB1) with an 

internal conserved sequence element CS2 (Fig. 4). A third MBFV conserved sequence 

element, previously identified as CS1, was found to be incorporated with a small stem loop 

structure (SL3) (Markoff, 2003). The absence of a Y-shaped structure typically conserved 

between TBFVs, NKVs, and ISFVs was noted (Fig. 4). The only common features that 

NHUV had with ISFVs was the 3’ LSH structure and a pentanucleotide sequence although 

only four out of five nucleotides were conserved. Comparisons of NHUV to other 

representative UVH viruses were inconclusive as many of these have incomplete 3’ UTR 

sequences available.

Codon usage frequencies

Studies of codon usage have indicated that certain codon dinucleotide pairings are utilized 

preferentially and this codon bias can often be correlated to match an organism’s transfer 

RNA pool (Akashi, 1994; Clarke, 1970; Ikemura, 1981). In particular, TA dinucleotides 

have been found to be proportionally underutilized for encoding amino acids in both 

vertebrate and invertebrate hosts in order to minimize targeting by endoribonucleases In 

addition, vertebrate hosts underutilize CG dinucleotides to reduce DNA methylase targeting 

and subsequent increased mutation rates at these sites (Zhao & Jiang, 2007). Examination of 

RNA viruses have indicated that they have evolved optimized codon usage for facilitated 

replication in hosts utilized (Lauring et al., 2012). In order to utilize these potential codon 

usage biases for the assessment of the potential vertebrate host infectivity by NHUV, we 

generated histograms of leucine (TA dinucleotide containing codons) and threonine, proline, 

and arginine codon usage frequencies (CG dinucleotide containing codons) for NHUV, 

WNV, CxFV, and MODV. As would be expected, all four viruses demonstrated an 

underutilization of TA (CTA and TTA codons) dinucleotides (Fig. 5a; Leu panel). MODV 

was found to highly underutilize CG dinucleotides with the mean codon frequency of these 

codons encoding Arg (CGT, CGC, CGA and CGG) to be 4.5% ± 0.1. In contrast, CxFV 

exhibited a usage of 19.3% ± 2.8 and 11.4% ± 6.3 for CG and non-CG codons. NHUV was 

identified to mirror the codon usage frequencies of CG dinucleotide codons (threonine, 

leucine, and proline) of WNV. Both WNV [11% ± 2.9 (non-CG) /28% ± 7.9 (CG)] and 

NHUV [13.5% ± 3.7 (non-CG) /22.3% ± 21.4 (CG)] demonstrate a bias against CG 

dinucleotide codons that was less significant that that of MODV (Fig 5).
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Inhibition of WNV, JEV, and SLEV growth

C6/36 cells were inoculated at an MOI of 5 with NHUV and challenged at day 0 (co-

infected), day 1, day 3, and day 5 post infection with WNV at an MOI of 0.1. Similar studies 

were performed with JEV and SLEV infection at 0 and 3 days post NHUV infection to 

determine if NHUV affects alternative representative MBFV flaviviruses isolated from 

Culex spp. mosquitoes. A two-way repeated measures ANOVA indicated a significant 

difference between NHUV co-infected groups and control viruses for WNV, JEV, and 

SLEV (p < .0001). A secondary Dunett’s multiple comparison test with a corrected p-value, 

found all control infections of WNV, JEV, or SLEV alone to have a significantly higher (p < 

0.0001) average titer for each daily time point sample (day 2 post-infection through day 7 

post-infection) as compared to groups pre- or co-infected with NHUV (Fig. 6). Comparison 

of SLEV and SLEV+NHUV d0pi, also from the D1 time point, was the only comparison in 

which a NHUV co-infected group did not show significantly reduced replication as 

compared to the control. The control viruses WNV, JEV, and SLEV alone achieved a 6.2 

log10 (PFU/ml), 1.2 log10 (PFU/ml), and 4.3 log10 (PFU/ml) higher mean peak titer than 

matched groups coinfected with NHUV (Fig. 6). These differences in peak titer translate to 

1.5 million-fold reduction for WNV, an 80-fold reduction for JEV, and a 15,000-fold 

reduction for SLEV in the presence of NHUV in vitro.

DISCUSSION

We describe the characterization of a novel mosquito-borne virus, Nhumirim virus (NHUV), 

from the Pantanal region of Brazil and establish with high degree of certainty that it 

segregates with MBFVs within the genus Flavivirus. While the source mosquito, Culex 

chidesteri, has not been shown to be a disease vector, WNV has been isolated from this 

species (Kent et al., 2010b). Field studies have indicated this mosquito feeds on a range of 

hosts including humans, chickens, rabbits, and turtles (Almiron & Brewer, 1995). The 

NHUV isolate is part of a novel group of flaviviruses that we are tentative designating as 

unidentified vertebrate host (UVH) viruses that have been isolated from a wide geographic 

range including China (Wang et al., 2009), Republic of Korea (Lee et al., 2013a), Côte 

d’Ivoire (Junglen et al., 2009), Finland (Huhtamo et al., 2009), Israel (Kolodziejek et al., 

2013) and Peru (Evangelista et al., 2013). Upon phylogenetic characterization, we found 

that NHUV clustered most closely with these viruses and had the same apparent inability to 

replicate in mammalian vertebrate cells, despite being grouped within the dual-host 

mosquito vectored clade of flaviviruses. Interestingly, NHUV, NOUV, and BJV form a 

distinct clade from the branch encompassing CHAOV, LAMV, and DGV, which may be 

due to vector/host species differences. CHAOV, LAMV, and DGV viruses were all 

reportedly isolated from Aedes spp. while NANV, NHUV, and BJV were isolated from 

either Culex spp. or Uranotaenia spp. (Evangelista et al., 2013; Junglen et al., 2009; 

Kolodziejek et al., 2013; Lee et al., 2013a; Wang et al., 2009). While there is a precedent 

for vector/host preference being correlated with phylogenetic divergence throughout the 

Flavivirus genus, research into the vector preference or transmission mechanism (i.e. 

transovarial or oral infectious) of these viruses has yet to be performed.
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The phylogenetic branching pattern indicates that NHUV, NOUV, and BJV share a more 

recent common ancestor with viruses from the MBFV group than with the other members of 

the distinct clade UVH viruses including CHAOV, LAMV, and DGV in that phylogenetic 

cluster. The phenotypic and phylogenetic contrast is what makes these viruses of particular 

interest because historically, flaviviruses have been found to cluster by host/vector 

preference. There are three possible explanations for this anomaly: 1) these viruses are a 

distinct group of ISFs that never evolved the ability to replicate in vertebrate hosts, 2) these 

viruses are part of the dual-host mosquito vectored clade and have lost the ability to replicate 

in vertebrates, or 3) these viruses are part of the dual-host mosquito vectored clade and 

replicate in an as of yet to identified non-insect secondary host. 3’ UTR analysis in concert 

with phylogenetic findings indicate that NHUV has the most conserved structures and 

sequences (present and absent) with viruses of the MBFV group. Specifically, the complete 

conservation of the 3’ LSH pentanucleotide with other MBFVs, the presence of SL2 which 

is conserved between TBFV, MBFV, and NKV, but not ISFV (Gritsun & Gould, 2007b), 

and the absence of Y-1 which is conserved in NKV (Charlier et al., 2002), TBFV (Gritsun & 

Gould, 2007b; Gritsun et al., 1997; Proutski et al., 1997), ISFV (Gritsun et al., 2014) but not 

MBFV, supports the likelihood that NHUV is a member of the mosquito-borne flavivirus 

group and has either lost its ability to replicate in vertebrates or has an as yet unidentified 

vertebrate host. Similar observations were made upon informal analysis of codon usage 

preferences in that NHUV codon usage by amino acid more closely resembled that of WNV 

than the insect specific model utilized, CxFV. A study by Lobo et al. indicated that 

Flaviviridae members which persist in a single host cycle have codon usage profiles more 

similar to their hosts than to closely related Flaviviridae (Lobo et al., 2009). The dissimilar 

codon usage profiles between the insect-specific virus CxFV and NHUV in concert with the 

similarities between the codon profile of NHUV and WNV supports the theory that NHUV 

is not a mosquito-specific virus, but either a dual-host virus with an as of yet undiscovered 

vertebrate host or a virus that has recently lost its ability to replicate in vertebrates.

We compared the ability of NHUV to inhibit representative Culex spp. vectored MBFV 

replication upon simultaneous co-infection and delayed secondary infection. We were able 

to determine that NHUV had a significant inhibitory effect on the replication of WNV, 

SLEV, and JEV in culture by decreasing peak titers anywhere from 6.2 log10 (PFU/ml) to 

1.2 log10 (PFU/ml). This inhibitory effect was observed as early as one-day post-infection 

for both WNV and JEV, and by day two post-infection for SLEV, which is not unexpected 

as SLEV is a slower growing virus. Inhibition of WNV growth in vitro following co-

infection with an insect specific flavivirus, CxFV, has been demonstrated previously by 

Bolling et al., in which ∼1.0 log10 reduction of WNV in co-infected C6/36 cells (Bolling et 

al., 2012) and Hobson-Peters et al showed inhibition of up to 1.6 log10 for Palm Creek Virus 

(PCV) inhibition of Murray Valley encephalitis virus and a 1.0 log10 reduction in WNV 

replication (Hobson-Peters et al., 2013). Such inhibition upon dual-infection has often been 

described by superinfection exclusion, the phenomenon in which a cell infected with one 

virus cannot be secondarily infected with another, closely related virus. It has been 

previously demonstrated in vitro and in vivo for both alphaviruses and flaviviruses (Bolling 

et al., 2012; Eaton, 1979; 1981; Hobson-Peters et al., 2013; Karpf et al., 1997; Kent et al., 

2010a; Pepin et al., 2008; Pesko & Mores, 2009). However, while we did observe inhibition 
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with secondary infection with WNV, SLEV, and JEV that would be consistent with 

superinfection exclusion, we also saw equally marked MBFV inhibition when the viruses 

were infected with NHUV simultaneously. This is of particular interest as studies of 

superinfection have indicated the exclusion of secondary infection generally does not take 

effect until at least one hour following infection with the initial virus (Eaton, 1979; Johnston 

et al., 1974). Therefore, it is likely that NHUV has a distinct mechanism that interferes with 

replication of these Culex spp. vectored MBFV as demonstrated in vitro. It is also of note 

that NHUV was found to have a high TCID50 in C6/36 cells, which may also contribute to 

the efficiency of the inhibition effect. Because the range of species, rate, or geographic 

spread of NHUV infection remains unknown, we cannot draw conclusions regarding any 

potential impact this inhibition phenomenon may have in the field. Further studies will need 

to examine whether these same inhibitory effects translate into in vivo mosquito infection, 

dissemination, and transmission blockage. Previous studies investigating the inhibition of 

CxFV on transmission of WNV in Culex spp. have shown mixed results, indicating that 

observed replication interference in vitro may not necessarily be indicative of in vivo 

findings (Bolling et al., 2012; Kent et al., 2010a). However the increased phylogenetic 

relatedness between MBFV and NHUV as compared to that of MBFV and CxFV could be 

an important contributing variable to the degree of inhibition. The phylogenetic relatedness 

between NHUV and MBFV also improves prospects for vaccine development, as 

recombinant and chimeric viruses are more likely to be stable and viable. Ongoing studies 

are focusing on examining chimeras between WNV and NHUV in order to evaluate regions 

responsible for co-infection inhibition, as well as determine regions responsible for ablated 

vertebrate replication. Identification of these regions could have implications for improved 

attenuation strategies, which would allow for an additional safety factors as well as shed 

light on fundamental genetic determinants that dictate host range differences of flaviviruses.

METHODS

Virus isolation and sequencing

Adult mosquitoes were collected between 2009 and 2010 in the Nhecolândia sub-region of 

the Pantanal, within the State of Mato Grosso do Sul, Brazil as previously described in 

Pauvolid-Correa et al. (Pauvolid-Correa et al., 2013). Pools of mosquitoes were 

homogenized in 300 µl Dulbecco’s modified Eagle medium (DMEM) complete with 

penicillin (100U/ml), streptomycin (100mg/ml), 10% fetal bovine serum (FBS), and 

50µg/ml amphotericin B. Clarified supernatants from triturated mosquito pools were used to 

inoculate both C6/36 (mosquito) and Vero (mammalian) cells in 24-well plates. Inoculated 

cells were observed daily and harvested upon the appearance of cytopathic effect (CPE) or 

following ten days incubation. Ae. albopictus C6/36 cells were maintained at 28°C with 

complete DMEM supplemented with 10% FBS, and penicillin/streptomycin. Viral RNA was 

extracted from 140ul of the harvested supernatant using QIAamp RNA mini kit (Qiagen, 

Inc., Valencia, CA). RT-PCR was performed on the extracted RNA using flavivirus-specific 

primers as previously described (Pauvolid-Correa et al., 2013; Pauvolid-Correa et al., in 

review). The full coding sequence was acquired with second generation sequencing (SGS) 

using a Mi-Seq system (Illumina Inc., San Diego, CA, USA) and the NHUV virus genome 

was constructed via an automated computational pipeline as previously described (Langevin 
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et al., 2013; Pauvolid-Correa et al., in review). The 5’ and 3’ untranslated regions (UTRs) 

were confirmed using the corresponding kit for rapid amplification of cDNA ends (RACE) 

(Invitrogen, Carlsbad, CA, USA).

Phylogenetic analysis/codon usage frequency calculations

The NHUV polyprotein open reading frame sequence was aligned with available flavivirus 

sequences in the NCBI database using MUSCLE on the Cipres Science Gateway (Edgar, 

2004; Miller et al., 2010). Maximum likelihood inference was performed using RAxML 

7.06 on the Cipres Science Gateway (Stamatakis et al., 2008). 1000 replicates of 

bootstrapping resampling were utilized to assess the accuracy of tree topologies. Output 

trees were manipulated using Fig Tree v1.4. Codon frequency calculations were performed 

using MacVector (v10.6) (MacVector, Inc, Cary, North NC, USA) software based on the 

coding regions of the following arboviral strains; WNV (382-99; AF196835), MODV 

(M544; AJ242984), CxFV (FJ663034) and NHUV (KJ210048) strain characterized herein.

IFA and TCID50

To confirm and quantify the growth of the non-plaque forming NHUV flavivirus isolate, 

immunofluorescence assays (IFAs) were performed in conjunction with the Reed and 

Muench method for titrating endpoints (Biacchesi et al., 2005; Reed & Muench, 1938). 

C6/36 cells were inoculated with 10-fold serial dilutions in a 96-well format and fixed with 

20% acetone 24 hours post-infection. Once fixed, cells were washed with phosphate 

buffered saline (PBS), incubated with a pan-flavivirus monoclonal (Dengue 2, New Guinea 

C; 4G2) antibody, washed with PBS, and incubated with a FITC-labeled secondary antibody 

(goat anti-mouse IgG; Jackson ImmunoResearch Laboratories, West Grove, PA). After a 

final wash, cells were examined for the presence of viral antigen with an inverted 

fluorescent microscope.

In vitro characterization

In vitro propagation of the isolate was attempted in various cell lines including Aedes 

albopictus mosquito (C6/36 and C7/10), Culex quinquefasciatus, Ixodes scapularis tick cells 

(ISE6), African green monkey (Vero), and hamster (BHK21-clone 15), chicken (DF-1), and 

Xenopus laevis (South African clawed toad) cells. Each cell monolayer was inoculated at a 

multiplicity of infection of 10 TCID50 units from supernatant isolated from the original 

passage of the triturated mosquito pool sample as determined by titration on C6/36 cells. 

Cultures were observed for CPE for 7 days prior to harvest. Virus was serially blind 

passaged three times each on Vero cells, ISE6 cells, and BHK21 clone15 cells as no initial 

CPE was identified following a single passage. To confirm the presence or absence of viral 

replication, RT-PCR was performed on supernatant taken from the third passage using pan-

flavivirus primers, FU1 and CFD3R, designed to amplify a ∼1085 nt portion of the NS5 

gene region (Kuno et al., 1998). Negative RT-PCR samples were confirmed by IFA.

Inhibition of West Nile virus growth in vitro

West Nile virus utilized for co-infection studies was derived from an infectious clone of the 

New York 1999 strain (Kinney et al., 2006). Twelve well plates of C6/36 cells all originally 
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seeded at the same time and density, were inoculated at an MOI of 5 with NHUV. These 

cultures were subsequently inoculated with WNV, JEV, or SLEV at an MOI of 0.1 on day 0 

(simultaneous co-infection) and day 3 following initial NHUV infection. Additional pre-

inoculation of NHUV was performed at −1 and −5 dpi for WNV inhibition studies. All 

infections were performed in duplicate with mock WNV, JEV, and SLEV infection controls 

for each experimental time-point group. Additionally, a positive infection control for each 

virus was inoculated at 0.1 MOI on C6/36 cells that were split at the same time as the 

experimental dual infection replicate cultures. Supernatant samples were observed and 

collected daily from triplicate cultures and subsequently titered by plaque assay. A two-way 

ANOVA with an a posteriori Tukey’s multiple comparison was utilized to assess statistical 

differences in viral titers between the control and dual-infection groups.

3’ UTR characterization

It has been previously proposed that an ancestral form of the flavivirus 3’ UTR has evolved 

in such a way that divergence of the TBFV, MBFV, NKV, and ISF groups can be 

distinguished by the presence and number of long repeated sequences (LRS) and shorter 

direct repeats (DR), as well as the characterization of secondary structure RNA elements 

that are found in the 3’ UTR (Grard et al., 2007; Gritsun & Gould, 2006a; b; c; 2007a; b; 

Hahn et al., 1987). As such, the 3’ UTR of the NHUV isolate was compared to 3’ UTRs of 

representative members from other flaviviruses representing the distinctive phylogenetic and 

phenotypic grouping viruses in order to identify homologous secondary structures and repeat 

elements that could associate with phylogenetic or phenotypic patterns. R-Coffee (Moretti et 

al., 2008) was utilized to generate multiple alignments between available 3’ UTR regions of 

flaviviruses for identification of conserved repeat regions and location of homologous 

secondary structure RNA elements in concert with direct comparison to structural elements 

and sequences identified from previous studies (Gritsun & Gould, 2006a; b; c; Markoff, 

2003). Mfold web server was utilized to predict secondary structure formation with the 

maximum distance between paired bases set to 80 as previously described by Gritsun et al. 

2014 (Gritsun et al., 2014; Zuker, 2003).

Acknowledgements

We would like to thank Robert Tesh for providing the amphibian cell line, Nisha Duggal and Goro Kuno for 
reviewing the manuscript as well as Tamara Gritsun for advice on the 3’ UTR analysis. JLK was supported by an 
ASM/CDC postdoctoral fellowship. Sandia is a multi-program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s 
National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational 
accuracy. Genetics. 1994; 136:927–935. [PubMed: 8005445] 

Aliota MT, Jones SA, Dupuis AP, Ciota AT 2nd, Hubalek Z, Kramer LD. Characterization of 
rabensburg virus, a flavivirus closely related to west nile virus of the Japanese encephalitis antigenic 
group. PLoS One. 2012; 7:e39387. [PubMed: 22724010] 

Almiron WR, Brewer MM. [Host preference of Culicidae (Diptera) collected in central Argentina]. 
Revista de saude publica. 1995; 29:108–114. [PubMed: 8525319] 

Aranda C, Sanchez-Seco MP, Caceres F, Escosa R, Galvez JC, Masia M, Marques E, Ruiz S, Alba A, 
Busquets N, Vazquez A, Castella J, Tenorio A. Detection and monitoring of mosquito flaviviruses 

Kenney et al. Page 10

J Gen Virol. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in Spain between 2001 and 2005. Vector Borne Zoonotic Dis. 2009; 9:171–178. [PubMed: 
18959502] 

Biacchesi S, Skiadopoulos MH, Yang L, Murphy BR, Collins PL, Buchholz UJ. Rapid human 
metapneumovirus microneutralization assay based on green fluorescent protein expression. J Virol 
Methods. 2005; 128:192–197. [PubMed: 15955576] 

Blitvich BJ, Lin M, Dorman KS, Soto V, Hovav E, Tucker BJ, Staley M, Platt KB, Bartholomay LC. 
Genomic sequence and phylogenetic analysis of Culex flavivirus, an insect-specific flavivirus, 
isolated from Culex pipiens (Diptera: Culicidae) in Iowa. J Med Entomol. 2009; 46:934–941. 
[PubMed: 19645300] 

Bolling BG, Eisen L, Moore CG, Blair CD. Insect-specific flaviviruses from Culex mosquitoes in 
Colorado, with evidence of vertical transmission. Am J Trop Med Hyg. 2011; 85:169–177. 
[PubMed: 21734144] 

Bolling BG, Olea-Popelka FJ, Eisen L, Moore CG, Blair CD. Transmission dynamics of an insect-
specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection 
on vector competence for West Nile virus. Virology. 2012; 427:90–97. [PubMed: 22425062] 

Calzolari M, Bonilauri P, Bellini R, Caimi M, Defilippo F, Maioli G, Albieri A, Medici A, Veronesi R, 
Pilani R, Gelati A, Angelini P, Parco V, Fabbi M, Barbieri I, Lelli D, Lavazza A, Cordioli P, Dottori 
M. Arboviral survey of mosquitoes in two northern Italian regions in 2007 and 2008. Vector Borne 
Zoonotic Dis. 2010; 10:875–884. [PubMed: 20370434] 

Castle E, Leidner U, Nowak T, Wengler G, Wengler G. Primary structure of the West Nile flavivirus 
genome region coding for all nonstructural proteins. Virology. 1986; 149:10–26. [PubMed: 
3753811] 

Charlier N, Leyssen P, Pleij CW, Lemey P, Billoir F, Van Laethem K, Vandamme AM, De Clercq E, 
de Lamballerie X, Neyts J. Complete genome sequence of Montana Myotis leukoencephalitis 
virus, phylogenetic analysis and comparative study of the 3’ untranslated region of flaviviruses 
with no known vector. J Gen Virol. 2002; 83:1875–1885. [PubMed: 12124451] 

Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for 
human pathogens. Cell host & microbe. 2011; 10:307–310. [PubMed: 22018231] 

Clarke B. Darwinian evolution of proteins. Science (New York, NY). 1970; 168:1009–1011.

Cook S, Bennett SN, Holmes EC, De Chesse R, Moureau G, de Lamballerie X. Isolation of a new 
strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J 
Gen Virol. 2006; 87:735–748. [PubMed: 16528021] 

Cook S, Moureau G, Harbach RE, Mukwaya L, Goodger K, Ssenfuka F, Gould E, Holmes EC, de 
Lamballerie X. Isolation of a novel species of flavivirus and a new strain of Culex flavivirus 
(Flaviviridae) from a natural mosquito population in Uganda. J Gen Virol. 2009; 90:2669–2678. 
[PubMed: 19656970] 

Crabtree MB, Nga PT, Miller BR. Isolation and characterization of a new mosquito flavivirus, Quang 
Binh virus, from Vietnam. Arch Virol. 2009; 154:857–860. [PubMed: 19347244] 

Crabtree MB, Sang RC, Stollar V, Dunster LM, Miller BR. Genetic and phenotypic characterization of 
the newly described insect flavivirus, Kamiti River virus. Arch Virol. 2003; 148:1095–1118. 
[PubMed: 12756617] 

Crockett RK, Burkhalter K, Mead D, Kelly R, Brown J, Varnado W, Roy A, Horiuchi K, Biggerstaff 
BJ, Miller B, Nasci R. Culex flavivirus and West Nile virus in Culex quinquefasciatus populations 
in the southeastern United States. J Med Entomol. 2012; 49:165–174. [PubMed: 22308785] 

Eaton BT. Heterologous interference in Aedes albopictus cells infected with alphaviruses. J Virol. 
1979; 30:45–55. [PubMed: 480461] 

Eaton BT. Viral interference and persistence in Sindbis virus infected Aedes albopictus cells. Canadian 
journal of microbiology. 1981; 27:563–567. [PubMed: 6266625] 

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic 
acids research. 2004; 32:1792–1797. [PubMed: 15034147] 

Evangelista J, Cruz C, Guevara C, Astete H, Carey C, Kochel TJ, Morrison AC, Williams M, Halsey 
ES, Forshey BM. Characterization of a novel flavivirus isolated from Culex (Melanoconion) 
ocossa mosquitoes from Iquitos, Peru. J Gen Virol. 2013; 94:1266–1272. [PubMed: 23515021] 

Kenney et al. Page 11

J Gen Virol. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Farfan-Ale JA, Lorono-Pino MA, Garcia-Rejon JE, Hovav E, Powers AM, Lin M, Dorman KS, Platt 
KB, Bartholomay LC, Soto V, Beaty BJ, Lanciotti RS, Blitvich BJ. Detection of RNA from a 
novel West Nile-like virus and high prevalence of an insect-specific flavivirus in mosquitoes in the 
Yucatan Peninsula of Mexico. Am J Trop Med Hyg. 2009; 80:85–95. [PubMed: 19141845] 

Farfan-Ale JA, Lorono-Pino MA, Garcia-Rejon JE, Soto V, Lin M, Staley M, Dorman KS, 
Bartholomay LC, Hovav E, Blitvich BJ. Detection of flaviviruses and orthobunyaviruses in 
mosquitoes in the Yucatan Peninsula of Mexico in 2008. Vector Borne Zoonotic Dis. 2010; 
10:777–783. [PubMed: 20370430] 

Gentry MK, Henchal EA, McCown JM, Brandt WE, Dalrymple JM. Identification of distinct antigenic 
determinants on dengue-2 virus using monoclonal antibodies. Am J Trop Med Hyg. 1982; 31:548–
555. [PubMed: 6177259] 

Gould EA, de Lamballerie X, Zanotto PM, Holmes EC. Origins, evolution, and vector/host 
coadaptations within the genus Flavivirus. Adv Virus Res. 2003; 59:277–314. [PubMed: 
14696332] 

Grard G, Moureau G, Charrel RN, Lemasson JJ, Gonzalez JP, Gallian P, Gritsun TS, Holmes EC, 
Gould EA, de Lamballerie X. Genetic characterization of tick-borne flaviviruses: new insights into 
evolution, pathogenetic determinants and taxonomy. Virology. 2007; 361:80–92. [PubMed: 
17169393] 

Gritsun DJ, Jones IM, Gould EA, Gritsun TS. Molecular Archaeology of Flaviviridae Untranslated 
Regions: Duplicated RNA Structures in the Replication Enhancer of Flaviviruses and Pestiviruses 
Emerged via Convergent Evolution. PLoS One. 2014; 9:e92056. [PubMed: 24647143] 

Gritsun TS, Gould EA. The 3’ untranslated region of tick-borne flaviviruses originated by the 
duplication of long repeat sequences within the open reading frame. Virology. 2006a; 354:217–
223. [PubMed: 17063566] 

Gritsun TS, Gould EA. The 3’ untranslated regions of Kamiti River virus and Cell fusing agent virus 
originated by self-duplication. J Gen Virol. 2006b; 87:2615–2619. [PubMed: 16894200] 

Gritsun TS, Gould EA. Direct repeats in the 3’ untranslated regions of mosquito-borne flaviviruses: 
possible implications for virus transmission. J Gen Virol. 2006c; 87:3297–3305. [PubMed: 
17030864] 

Gritsun TS, Gould EA. Direct repeats in the flavivirus 3’ untranslated region; a strategy for survival in 
the environment? Virology. 2007a; 358:258–265. [PubMed: 17067651] 

Gritsun TS, Gould EA. Origin and evolution of 3’UTR of flaviviruses: long direct repeats as a basis 
for the formation of secondary structures and their significance for virus transmission. Adv Virus 
Res. 2007b; 69:203–248. [PubMed: 17222695] 

Gritsun TS, Venugopal K, Zanotto PM, Mikhailov MV, Sall AA, Holmes EC, Polkinghorne I, Frolova 
TV, Pogodina VV, Lashkevich VA, Gould EA. Complete sequence of two tick-borne flaviviruses 
isolated from Siberia and the UK: analysis and significance of the 5’ and 3’-UTRs. Virus Res. 
1997; 49:27–39. [PubMed: 9178494] 

Gubler DJ. The global emergence/resurgence of arboviral diseases as public health problems. Archives 
of medical research. 2002; 33:330–342. [PubMed: 12234522] 

Hahn CS, Hahn YS, Rice CM, Lee E, Dalgarno L, Strauss EG, Strauss JH. Conserved elements in the 
3’ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol. 1987; 
198:33–41. [PubMed: 2828633] 

Hobson-Peters J, Yam AW, Lu JW, Setoh YX, May FJ, Kurucz N, Walsh S, Prow NA, Davis SS, 
Weir R, Melville L, Hunt N, Webb RI, Blitvich BJ, Whelan P, Hall RA. A new insect-specific 
flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley 
encephalitis virus in co-infected mosquito cells. PLoS One. 2013; 8:e56534. [PubMed: 23460804] 

Hoshino K, Isawa H, Tsuda Y, Sawabe K, Kobayashi M. Isolation and characterization of a new insect 
flavivirus from Aedes albopictus and Aedes flavopictus mosquitoes in Japan. Virology. 2009; 
391:119–129. [PubMed: 19580982] 

Huhtamo E, Putkuri N, Kurkela S, Manni T, Vaheri A, Vapalahti O, Uzcategui NY. Characterization 
of a novel flavivirus from mosquitoes in northern europe that is related to mosquito-borne 
flaviviruses of the tropics. J Virol. 2009; 83:9532–9540. [PubMed: 19570865] 

Kenney et al. Page 12

J Gen Virol. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence 
of the respective codons in its protein genes: a proposal for a synonymous codon choice that is 
optimal for the E. coli translational system. J Mol Biol. 1981; 151:389–409. [PubMed: 6175758] 

Johnston RE, Wan K, Bose HR. Homologous interference induced by Sindbis virus. J Virol. 1974; 
14:1076–1082. [PubMed: 4473566] 

Junglen S, Kopp A, Kurth A, Pauli G, Ellerbrok H, Leendertz FH. A new flavivirus and a new vector: 
characterization of a novel flavivirus isolated from uranotaenia mosquitoes from a tropical rain 
forest. J Virol. 2009; 83:4462–4468. [PubMed: 19224998] 

Karpf AR, Lenches E, Strauss EG, Strauss JH, Brown DT. Superinfection exclusion of alphaviruses in 
three mosquito cell lines persistently infected with Sindbis virus. J Virol. 1997; 71:7119–7123. 
[PubMed: 9261447] 

Kent RJ, Crabtree MB, Miller BR. Transmission of West Nile virus by Culex quinquefasciatus say 
infected with Culex Flavivirus Izabal. PLoS neglected tropical diseases. 2010a; 4:e671. [PubMed: 
20454569] 

Kent RJ, Deus S, Williams M, Savage HM. Development of a multiplexed polymerase chain reaction-
restriction fragment length polymorphism (PCR-RFLP) assay to identify common members of the 
Subgenera Culex (Culex) and Culex (Phenacomyia) in Guatemala. Am J Trop Med Hyg. 2010b; 
83:285–291. [PubMed: 20682869] 

Kim DY, Guzman H, Bueno R Jr, Dennett JA, Auguste AJ, Carrington CV, Popov VL, Weaver SC, 
Beasley DW, Tesh RB. Characterization of Culex Flavivirus (Flaviviridae) strains isolated from 
mosquitoes in the United States and Trinidad. Virology. 2009; 386:154–159. [PubMed: 19193389] 

Kinney RM, Huang CY, Whiteman MC, Bowen RA, Langevin SA, Miller BR, Brault AC. Avian 
virulence and thermostable replication of the North American strain of West Nile virus. J Gen 
Virol. 2006; 87:3611–3622. [PubMed: 17098976] 

Kolodziejek J, Pachler K, Bin H, Mendelson E, Shulman L, Orshan L, Nowotny N. Barkedji virus, a 
novel mosquito-borne flavivirus identified in Culex perexiguus mosquitoes, Israel, 2011. J Gen 
Virol. 2013

Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB. Phylogeny of the genus Flavivirus. J 
Virol. 1998; 72:73–83. [PubMed: 9420202] 

Langevin SA, Bent ZW, Solberg OD, Curtis DJ, Lane PD, Williams KP, Schoeniger JS, Sinha A, Lane 
TW, Branda SS. Peregrine: A rapid and unbiased method to produce strand-specific RNA-Seq 
libraries from small quantities of starting material. RNA biology. 2013; 10:502–515. [PubMed: 
23558773] 

Lauring AS, Acevedo A, Cooper SB, Andino R. Codon usage determines the mutational robustness, 
evolutionary capacity, and virulence of an RNA virus. Cell host & microbe. 2012; 12:623–632. 
[PubMed: 23159052] 

Lee JS, Grubaugh ND, Kondig JP, Turell MJ, Kim HC, Klein TA, O’Guinn ML. Isolation and 
genomic characterization of Chaoyang virus strain ROK144 from Aedes vexans nipponii from the 
Republic of Korea. Virology. 2013a; 435:220–224. [PubMed: 23127596] 

Lee RC, Hapuarachchi HC, Chen KC, Hussain KM, Chen H, Low SL, Ng LC, Lin R, Ng MM, Chu JJ. 
Mosquito cellular factors and functions in mediating the infectious entry of chikungunya virus. 
PLoS neglected tropical diseases. 2013b; 7:e2050. [PubMed: 23409203] 

Lobo FP, Mota BE, Pena SD, Azevedo V, Macedo AM, Tauch A, Machado CR, Franco GR. Virus-
host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS 
One. 2009; 4:e6282. [PubMed: 19617912] 

Markoff L. 5’- and 3’-noncoding regions in flavivirus RNA. Adv Virus Res. 2003; 59:177–228. 
[PubMed: 14696330] 

Miller, MA.; Pfeiffer, W.; Schwartz, T. Proceedings of the Gateway Computing Environments 
Workshop (GCE). New Orleans, LA: 2010. Creating the CIPRES Science Gateway for inference 
of large phylogenetic trees. 

Morales-Betoulle ME, Monzon Pineda ML, Sosa SM, Panella N, Lopez MR, Cordon-Rosales C, 
Komar N, Powers A, Johnson BW. Culex flavivirus isolates from mosquitoes in Guatemala. J Med 
Entomol. 2008; 45:1187–1190. [PubMed: 19058647] 

Kenney et al. Page 13

J Gen Virol. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Moretti S, Wilm A, Higgins DG, Xenarios I, Notredame C. R-Coffee: a web server for accurately 
aligning noncoding RNA sequences. Nucleic acids research. 2008; 36:W10–W13. [PubMed: 
18483080] 

Pabbaraju K, Ho KC, Wong S, Fox JD, Kaplen B, Tyler S, Drebot M, Tilley PA. Surveillance of 
mosquito-borne viruses in Alberta using reverse transcription polymerase chain reaction with 
generic primers. J Med Entomol. 2009; 46:640–648. [PubMed: 19496438] 

Parreira R, Cook S, Lopes A, de Matos AP, de Almeida AP, Piedade J, Esteves A. Genetic 
characterization of an insect-specific flavivirus isolated from Culex theileri mosquitoes collected 
in southern Portugal. Virus Res. 2012

Pauvolid-Correa A, Kenney JL, Couto-Lima D, Campos ZM, Schatzmayr HG, Nogueira RM, Brault 
AC, Komar N. Ilheus virus isolation in the pantanal, west-central Brazil. PLoS neglected tropical 
diseases. 2013; 7:e2318. [PubMed: 23875051] 

Pauvolid-Correa A, Solberg OD, Couto-Lima D, Kenney JL, Serra-Freire NM, Brault AC, Nogueira 
JR, Langevin SA, Komar N. Nhumirim virus, a novel flavivirus isolated from mosquitoes from the 
Pantanal, Brazil. Arch Virol. in review

Pepin KM, Domsic J, McKenna R. Genomic evolution in a virus under specific selection for host 
recognition. Infection, genetics and evolution : journal of molecular epidemiology and 
evolutionary genetics in infectious diseases. 2008; 8:825–834.

Pesko K, Mores CN. Effect of sequential exposure on infection and dissemination rates for West Nile 
and St. Louis encephalitis viruses in Culex quinquefasciatus. Vector Borne Zoonotic Dis. 2009; 
9:281–286. [PubMed: 19492941] 

Proutski V, Gould EA, Holmes EC. Secondary structure of the 3’ untranslated region of flaviviruses: 
similarities and differences. Nucleic acids research. 1997; 25:1194–1202. [PubMed: 9092629] 

Reed M, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1938; 27:493–
497.

Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH. Nucleotide sequence of yellow 
fever virus: implications for flavivirus gene expression and evolution. Science. 1985; 229:726–
733. [PubMed: 4023707] 

Roiz D, Vazquez A, Seco MP, Tenorio A, Rizzoli A. Detection of novel insect flavivirus sequences 
integrated in Aedes albopictus (Diptera: Culicidae) in Northern Italy. Virology journal. 2009; 6:93. 
[PubMed: 19575816] 

Sanchez-Seco MP, Vazquez A, Collao X, Hernandez L, Aranda C, Ruiz S, Escosa R, Marques E, 
Bustillo MA, Molero F, Tenorio A. Surveillance of arboviruses in Spanish wetlands: detection of 
new flavi- and phleboviruses. Vector Borne Zoonotic Dis. 2010; 10:203–206. [PubMed: 
19485777] 

Sang RC, Gichogo A, Gachoya J, Dunster MD, Ofula V, Hunt AR, Crabtree MB, Miller BR, Dunster 
LM. Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected 
flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch Virol. 2003; 
148:1085–1093. [PubMed: 12756616] 

Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. 
Systematic biology. 2008; 57:758–771. [PubMed: 18853362] 

Vazquez A, Sanchez-Seco MP, Palacios G, Molero F, Reyes N, Ruiz S, Aranda C, Marques E, Escosa 
R, Moreno J, Figuerola J, Tenorio A. Novel flaviviruses detected in different species of 
mosquitoes in Spain. Vector Borne Zoonotic Dis. 2012; 12:223–229. [PubMed: 22022811] 

Wang Z, An S, Wang Y, Han Y, Guo J. A new virus of flavivirus: Chaoyang virus isolated in Liaoning 
province. Chin Public Health. 2009; 25:769–772.

Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends in parasitology. 
2011; 27:514–522. [PubMed: 21697014] 

Wengler G, Wengler G, Gross HJ. Studies on virus-specific nucleic acids synthesized in vertebrate and 
mosquito cells infected with flaviviruses. Virology. 1978; 89:423–437. [PubMed: 568848] 

Zhao Z, Jiang C. Methylation-dependent transition rates are dependent on local sequence lengths and 
genomic regions. Molecular biology and evolution. 2007; 24:23–25. [PubMed: 17056644] 

Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids 
research. 2003; 31:3406–3415. [PubMed: 12824337] 

Kenney et al. Page 14

J Gen Virol. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Phase contrast image depicting NHUV cytopathology in C6/36 cells in vitro; A) negative 

control mock infected, B) NHUV infected cells with syncytia.
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Figure 2. 
Epifluorescent images of IFA tests in the various cell types examined
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Figure 3. 
Phylogenetic analysis based on nucleotide sequences of complete polyprotein coding 

sequences. Phylogenies were constructed using the maximum likelihood method with 

labeled bootstrap percentages as support. Labels include taxon name and accession number. 

NHUV is highlighted in gray and clades are labeled by host association designations on the 

far right of the figure.
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Figure 4. 
Mfold generated prediction and labels denoting conserved secondary structure and sequence 

elements for CFAV (shown in alternating display for clarity), TBEV, MODV, WNV, and 

NHUV. Nucleotides included in conserved MBFV sequences such the pentanucleotide, 

conserved sequence 1 (CS1), and CS2 are highlighted with grey circles. A) Key structures 

identified in CFAV include the 3’ LSH with an internal conserved pentanucleotide 

(CACCG), a Y-shaped element, and a conserved hexanucleotide sequence element. B). 

TBEV had the 3’LSH, pentanucleotide (CACAG), SL2, and Y-1 with an internal 
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hexanucleotide sequence. C) MODV demonstrated the 3’ LSH, pentanucleotide (CUCAG), 

and Y-1 with internal hexanucleotide sequence.multiple. D) WNV showed a 3’LSH, the 

conserved pentanucleotide sequence (CACAG), SL2, conserved sequences CS1, CS2, and 

CS3. E) NHUV was found to have a 3’ LSH, a conserved pentanucleotide (CACAG), SL2, 

and only CS1 and CS2.
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Figure 5. 
Histograms demonstrating threonine, arginine, leucine, and proline codon usage frequencies 

for NHUV, WNV, CxFV, and MODV.
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Figure 6. 
Inhibition of WNV, JEV, and SLEV on C6/36 cells in the presence of NHUV. A) 

Replication kinetics of WNV compared with WNV dual-infection with NHUV at day 0, day 

1, day 3, and day 5 post-NHUV inoculations of C6/36 cells. B) JEV dual-infection with 

NHUV at day 0, and day 3 post-NHUV infection. C) SLEV dual infection with NHUV at 

day 0 and day 3 post-NHUV infection. Cells were inoculated with an MOI of 0.1 of the 
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representative MBFV and exposed to NHUV at an MOI of 5. Time points were collected 

daily for seven days following infection with each MBFV.
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Table 1

Summary of NHUV in vitro infection of various cell types

IFA RT-PCRa CPE

Vero - - -

BHK21-15 - - -

DF-1 - - -

Xenopus laevis - - -

C6/36 + + +

C710 + + +

Cx. quinquefasciatus + + +

ISE6 - - -

a
RT-PCR on supernatant from second passage
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Table 2

Genome organization of NHUV virus

Region Gene Position in genome (nt) Protein size (aa)a

5’ UTR 1-102

Structural

C 103–486 128

pr 487–768 94

M 769–993 75

E 994–2502 503

Non-
structural

NS1 2503–3555 351

NS2A 3556–4251 232

NS2B 4252–4641 130

NS3 4642–6507 622

NS4A 6508–6954 149

NS4B 6955–7719 255

NS5 7720–10440 907

3’ UTR 10441–10891

a
aa, amino acids
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